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The stability of periodic trajectories of a material point moving between two convex walls with elastic 

reflections is investigated. The problem is closely bound related to wave propagation theory in the 

shortwave approximation [ 11. The simplest periodic trajectory is a section of a straight line orthogonal to the 

walls at its endpoints. The problem of the stability of a two-part trajectory was solved in [l] in two 

dimensions. It will be solved here in three dimensions using the method developed in 121. 

1. STATEMENT OF THE PROBLEM 

WE WISH to investigate the stability of a two-part periodic trajectory of a Birkhoff billiard ball with 
three degrees of freedom (Fig. 1); a material point is moving constantly along a section of length f, 
being periodically reflected elastically from a boundary surface C. LetO, and O2 be the endpoints of 
the two-part trajectory. We introduce Cartesian coordinates x, y, z, with the z axis lying along 
0, Oz. In the neighbourhood of Oi , O2 the equation of the surface 2 has the form 

z = f, (x, y) = uix2 + b,xy + ciy2 -t o (x2 + y") 

z = f2 (x, y) = I - u2x2 - b,xy - c2y2 + o (x2 :- y") 

We can take as the parameter of the periodic motion the velocity v of the point. Following [2], we 
replace the unilateral constraints of the elastic force field by potential 

0, 

vN = 
fl < z < fz 

N (2 ----#/a, z < fl and z > f2; i =1,2 

FIG. 1 
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Here N is a positive parameter, which will subsequently approach +m. The problem of the 
motion of a point m in a field with potential V, has a family of 2T-periodic solutions: 

cc0 (t) = o, y, (t) = 0, 0 < t < 27’ 
vN-‘h sin N-Q, O<t,<T 

200) = 
u (t - q,. z,<t,<T (1.1) 

vN-% sin N-fi (t + T), T -< t < T + T 

u (t - T -T), T+T\<t<sT 

‘t=nN-X, T=z$llv 

Using Lyapunov’s method [3], we will now investigate the stability of the periodic motion (1.1) in 
the linear approximation, assuming that N is sufficiently large. As shown in [2], as N-P +a the 
conditions for the solution (1.1) to be stable become the conditions for the stability of a two-part 
trajectory of a Birkhoff billiard ball. 

2. THE GENERALIZED LYAPUNOV METHOD 

We will write the variational equations for the periodic solution (1.1) as a linear system of 
first-order differential equations: 

II O I O OII 

(&)’ = A @) &, A = - 2a;Pi 0) ; - bfi V) ; 

-biPi(t) O -2Cipi (t) 0 

(2.1) 

where pi(t) = (-1)‘vN-1’2 sinN-1’2 tiftE(0,7),i=1,andtE(T,T+7),i=1,pi(t)=0forother 
values of t. 

Let X(t) be a fundamental matrix for systems (2.1): X’ = AX, X(0) = E. The multipliers of the 
periodic solution (1.1) are the roots of the characteristic equation IX(2T) - pE 1 = 0. Since the 
motion of the point in a field with potential V, is described by the Hamilton equations, the 
characteristic equation is reciprocal [3]: 

P4 + up3 + bp2 + up + 1 = 0, a, b E R 

The left-hand side of (2.2) may be resolved into factors: 

(2.2) 

(p” + d+p + I) (P” + d-p + I) = 0 
d+ = la * (a” - 4b + @‘/l/2 (2.3) 

In the general case the coefficients d+ may be complex numbers. 
A necessary condition for the solution (1.1) to be stable is that all the roots of Eq. (2.2) should lie 

on the unit circle. This condition is satisfied if and only if d* are real and 1 d+ 1 c 2. Together with 
(2.3) this gives a system of inequalities defining the relationship between the real coefficients a, b: 

I a I < 4, 2a - b < 2, 2u -t_ h > -2, b < a214 + 2 (2.4) 
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FIG. 2. 

The domain thus defined in the a, b plane has a piecewise-smooth boundary, which is the union of 
four curves yi (Fig. 2). 

If (a, b) is a point of the boundary segment yl, the periodic motion is degenerate: one pair of 
multipliers coincides with the point p = 1, the other pair lies on the unit circle. If (a, b) E y2, one 
pair of multipliers coincides with the point p = -1, the other is again on the unit circle. Finally, if 
(a, b) E y3, the two pairs of complex-conjugate multipliers are identical. The corner points A, B in 
Fig. 2 correspond to the cases in which p = 1 and p = -1 are four-fold roots of the characteristic 
equation (2.2); the point C corresponds to double roots p = 1 and p = -1. 

To determine the coefficients a, b we use Lyapunov’s method (see [3]). To that end we introduce 
a parameter p. in Eq. (2.1): 

(62)’ = uA (1) 6z 

Then the solutions can be expressed as series in powers of u, which converge for all 1 pi G 1. Now, 
putting p = 1, we obtain expressions for the monodromy matrix elements, as convergent series. 
Now let the parameter N go to infinity. It turns out that in the limit the series become finite sums, so 
that explicit stability conditions can be derived (see [2]). Omitting the details, we present the final 
formulae for the coefficients a and b: 

a = -4 +&rz - (h, + h,) P, b == 6 + k,l + k,P + h-,1” + k,l* 

k, = -16a, k, = ha + h, + 64 (ai -t a,) (ci + 4 + 

+ 16 (aiu2 + c,c2) - 16bi2 - 24bib, - 16bz2 

k, = -8 (ci + CJ h, - 8 (a, + ~2) h, + 8 (b, + b2) H 

k, = h,h, - H2, CJ = a, + u2 + ci + c2 

h, = 4 [(4qi2 + bi2) (4q22 + b22)l%, q = a, c 

H = 8 [bib, (ai + ci) (uz + cd% 

(2.5) 
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3. STABILITY CONDITIONS 

Let us analyse inequalities (2.4) together with (2.5). We will first consider the special case in 
which bi = bz = 0. Assuming that the surface C is convex and also, to fix our ideas, that 0 Cal S ~2, 
0 < c1 6 c2, we obtain the following stability conditions in the linear approximation from (2.4): 

In that case Eqs (2.1) split into two independent Hill equations and inequalities (3.1) are the 
stability conditions for a two-part periodic trajectory of a Birkhoff billiard ball in two dimensions 
(when y = 0 or x = 0, respectively) [ 11. 

We will now analyse the general case. A suitable rotation of the x and y axes will make the 
coefficient bI vanish. 

The last inequality in system (2.4) is always true. Indeed, it can be expressed in the following 
equivalent form: 

[I (A, + A,) - (ai + a, - ci - c2)12 + ‘/2 (A, - 2a,a2) + 

+ ‘/2 (A, - 2c,c,) + b22 > 0, A, = qi (49,’ + b22)%, q = a, c (3.2) 

This becomes an equality only when b2 = 0, but then the stability conditions reduce to (3.1). If 
b2 # 0, then (3.2) is a strict inequality and therefore the pairs of complex-conjugate multipliers are 
distinct (see Sec. 2). 

Thus, the stability conditions in the typical case (bZ # 0) are 

la1\<4, 2a+b>-2, 2a-b<2 

where a and b are determined from (2.5). Now, fixing values of the parameters al, b, cl, let us vary 
the distance 1 between the walls from zero to infinity. We wish to investigate the behaviour of the 
multipliers in the complex plane as 1 is increased. 

If I+ 0 then, by (2.5), a+ -4 and b+6. Now increase 1. Relations (2.5) define a certain curve in 
the plane R2 = {a, b}, the form of which is an indicator of the stability of the two-part trajectory. If 
o < 0 then, by (2.5), a < -4 for all I> 0 and therefore the periodic trajectory under consideration is 
unstable. We shall therefore assume henceforth that a>O. Then as 1 is increased a increases and 
reaches its maximum at 

1 = I, = a/[2 (A, + A,)1 (3.3) 

For small 1 values the point (u(I), b(l)) 1 ies within the hatched domain in Fig. 2, provided that 
2u(Z) + b (I) > -2. This is equivalent to the condition 

A> 0, A = 8 (al + a2) (ci + c2) + 2(aia2 + cic2)- 2b22-A, - A, (3.4) 

We will show that this inequality will certainly hold if the surface C is convex (when at, cl > 0 and 
4u2c2 2 bz2). Indeed, we use the inequalities 

(4az2 + b22)X \< 2a2 + ~29 (4C22 + b22)% < 2c, + a2 

Then the left-hand side of inequality (3.4) is not less than the sum 8a1ul + 7(u2c1 + ulc2), which is 
always positive. Thus, if I; is convex the two-part trajectory is stable for small 1 values. 

Now increase 1. Then (a, b) will lie on the straight line that includes yl, provided that 1 is a root of 
the quadratic equation 

8R,A,P - 81 [(c, + c2) A, + (ai + a,) A,1 + A = 0 (3.5) 
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It can be shown that Eq. (3.5) always has two real roots; moreover, if inequality (3.4) is true both 
roots are positive; otherwise, one of them is negative. In addition, if 1 is the greater of the positive 
roots, then a(l) < -4. 

Thus, if the point (a(l), b(f)), b e g inning at the corner point A, enters the half-plane 2a + b < -2, 
then for all l>O the point (a, b) will remain outside the hatched domain in Fig. 2. We are here using 
continuity arguments and the fact that the curve (2.5) never cuts the parabola b = u2/4 + 2 if b2 # 0. 
Thus, inequality (3.4) is a necessary condition for the two-part trajectory to be stable. 

Once in the hatched domain, the point (a(l), b(Z)) can reach the boundary y2 provided that 
2u - b = 2 or, in explicit form: 

There are three possibilities: Eq. (3.6) has four positive roots (counting multiplicities), two 
positive roots or no roots l>O at all. The first case will certainly hold at some time as b2--+0. If Eq. 
(3.6) has no positive roots, then if l>f, [Z1 being the least of the positive roots of (3.91 the point 
(a, b) will leave the hatched domain, moving subsequently in the half-plane 2u+ b< -2, which it 
will leave from outside the vertical strip 1 a / =S 4. 

Suppose now that Eq. (3.6) has two positive roots Z2 and 13, where f, < f3. Then the point (u(l), 
b(l)) will reach y2 and leave the hatched domain for the half-plane 2u - b > 2, provided that 12 < II . 
Otherwise it will cross the straight line 2u - b = 2 outside y2. 

If Eq. (3.6) has four positive roots 12<13<Zd<15, then, depending on the value of II, the point 
(u(f), b(l)) will first cross one of the straight lines 2u - b = 2 or 2u + b = -2. As l> E5 increases 
further, (a, b) will cross the line 2u + b = -2 outside the half-plane a> -4 and remain, for 
sufficiently large I, within the domain 2u + b > -2, u2 - 46 + 8 > 0. 

As yet another application of the above stability conditions, let us consider the case in which the convex 
boundary Z is the union of two identical cylindrical surfaces, rotated relative to one another through an angle 
cp (0 G cp s 7~/2). Then we must consider Eqs (2.6) with 

a, = a > 0, b, = Cl = 0; a2 = a COG (p, b, = a sin 2~, c2 = a sin2 cp 

If ‘p = 0, the two-part trajectory will be degenerate: one pair of multipliers equals unity, while the other lies 
on the unit circle, provided that 5 = al< 1 [compare with (3. l)]. For 5 = l/2,5 = 1 we obtain a double multiplier 
p = - 1, p = 1. If cp = -rr/2, both pairs of multipliers lie on the circle 1 p 1 = 1, with 5 = l/2 corresponding to a pair 
of multipliers equal to -1. The necessary conditions for stability in the intermediate cases reduce to the 
following two inequalities: 

5 < (4 - cos cp - 3 cosa cp) (8 sin2 cp cos cp)-’ 

8 sin’ cp cos cp E3 - (4 f- 3 COS Cp - 3 COS' Cp) $," + 45 - 1 < 0 

It follows from these inequalities that at small angles of rotation cp the stability conditions in the linear 
approximation reduce to a single inequality, 5 < 706. 

REFERENCES 

I. BABICH V. M. and BULDYREV V. S., Asymptotic Methods in Shortwave Diffraction Problems. Nauka, Moscow, 1972. 
2. KOZLOV, V. V., A constructive method for justifying the theory of systems with non-restoring forces. Prikl. Mat. Mekh. 

52,6,883-894,1988. 
3. DEMIDOVICH, B. P., Lectures on the Mathematical Theory of Elasticity. Nauka, Moscow. 

Translated by D L. 


